40 research outputs found

    HAKA: HierArchical Knowledge Acquisition in a sign language tutor

    Get PDF
    Communication between people from different communities can sometimes be hampered by the lack of knowledge of each other's language. A large number of people needs to learn a language in order to ensure a fluid communication or want to do it just out of intellectual curiosity. To assist language learners' needs tutor tools have been developed. In this paper we present a tutor for learning the basic 42 hand configurations of the Spanish Sign Language, as well as more than one hundred of common words. This tutor registers the user image from an off-the-shelf webcam and challenges her to perform the hand configuration she chooses to practice. The system looks for the configuration, out of the 42 in its database, closest to the configuration performed by the user, and shows it to her, to help her to improve through knowledge of her errors in real time. The similarities between configurations are computed using Procrustes analysis. A table with the most frequent mistakes is also recorded and available to the user. The user may advance to choose a word and practice the hand configurations needed for that word. Sign languages have been historically neglected and deaf people still face important challenges in their daily activities. This research is a first step in the development of a Spanish Sign Language tutor and the tool is available as open source. A multidimensional scaling analysis of the clustering of the 42 hand configurations induced by Procrustes similarity is also presented.This work has been partially funded by the Basque Government, Spain, under Grant number IT1427-22; the Spanish Ministry of Science (MCIU), the State Research Agency (AEI), the European Regional Development Fund (FEDER), under Grant number PID2021-122402OB-C21 (MCIU/AEI/FEDER, UE); and the Spanish Ministry of Science, Innovation and Universities, under Grant FPU18/04737. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research

    Fuzzy classification with distance-based depth prototypes: High-dimensional unsupervised and/or supervised problems

    Get PDF
    Supervised and unsupervised classification is crucial in many areas where different types of data sets are common, such as biology, medicine, or industry, among others. A key consideration is that some units are more typical of the group they belong to than others. For this reason, fuzzy classification approaches are necessary. In this paper, a fuzzy supervised classification method, which is based on the construction of prototypes, is proposed. The method obtains the prototypes from an objective function that includes label information and a distance-based depth function. It works with any distance and it can deal with data sets of a wide nature variety. It can further be applied to data sets where the use of Euclidean distance is not suitable and to high-dimensional data (data sets in which the number of features is larger than the number of observations , often written as ). In addition, the model can also cope with unsupervised classification, thus becoming an interesting alternative to other fuzzy clustering methods. With synthetic data sets along with high-dimensional real biomedical and industrial data sets, we demonstrate the good performance of the supervised and unsupervised fuzzy proposed procedures.This research was partially supported: II by the Spanish ‘Ministerio de Economia y Competitividad’ (PID2019-106942RB-C31). CA by grant 2021SGR01421 (GRBIO) from the Departament de Economia i Coneixement de la Generalitat de Catalunya, Spain. II, CA and BS by the Spanish ‘Ministerio de Economia Competitividad’ (PID2021-122402OB-C21)

    Ensemble of 6 DoF Pose estimation from state-of-the-art deep methods.

    Get PDF
    Deep learning methods have revolutionized computer vision since the appearance of AlexNet in 2012. Nevertheless, 6 degrees of freedom pose estimation is still a difficult task to perform precisely. Therefore, we propose 2 ensemble techniques to refine poses from different deep learning 6DoF pose estimation models. The first technique, merge ensemble, combines the outputs of the base models geometrically. In the second, stacked generalization, a machine learning model is trained using the outputs of the base models and outputs the refined pose. The merge method improves the performance of the base models on LMO and YCB-V datasets and performs better on the pose estimation task than the stacking strategy.This paper has been supported by the project PROFLOW under the Basque program ELKARTEK, grant agreement No. KK-2022/00024

    Learning Optimal Time Series Combination and Pre-Processing by Smart Joins

    Get PDF
    In industrial applications of data science and machine learning, most of the steps of a typical pipeline focus on optimizing measures of model fitness to the available data. Data preprocessing, instead, is often ad-hoc, and not based on the optimization of quantitative measures. This paper proposes the use of optimization in the preprocessing step, specifically studying a time series joining methodology, and introduces an error function to measure the adequateness of the joining. Experiments show how the method allows monitoring preprocessing errors for different time slices, indicating when a retraining of the preprocessing may be needed. Thus, this contribution helps quantifying the implications of data preprocessing on the result of data analysis and machine learning methods. The methodology is applied to two case studies: synthetic simulation data with controlled distortions, and a real scenario of an industrial process.This research has been partially funded by the 3KIA project (ELKARTEK, Basque Government)

    Towards the Use of Similarity Distances to Music Genre Classification: a Comparative Study

    Get PDF
    Music genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets -or clusters- and then generating in an automatic way a new song which is somehow "inspired" in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is.This work was supported by IT900-16 Research Team from the Basque Government

    Towards Smart Data Selection from Tithe Series Using Statistical Methods

    Get PDF
    Transmitting and storing large volumes of dynamic / time series data collected by modern sensors can represent a significant technological challenge. A possibility to mitigate this challenge is to effectively select a subset of significant data points in order to reduce data volumes without sacrificing the quality of the results of the subsequent analysis. This paper proposes a method for adaptively identifying optimal data point selection algorithms for sensor time series on a window-by-window basis. Thus, this contribution focuses on quantifying the effect of the application of data selection algorithms to time series windows. The proposed approach is first used on multiple synthetically generated time series obtained by concatenating multiple sources one after the other, and then validated in the entire UCR time series public data archiveThis work was supported in part by the 3KIA Project through ELKARTEK, Basque Governmen

    ORdensity: user-friendly R package to identify differentially expressed genes

    Get PDF
    Background Microarray technology provides the expression level of many genes. Nowadays, an important issue is to select a small number of informative differentially expressed genes that provide biological knowledge and may be key elements for a disease. With the increasing volume of data generated by modern biomedical studies, software is required for effective identification of differentially expressed genes. Here, we describe an R package, called ORdensity, that implements a recent methodology (Irigoien and Arenas, 2018) developed in order to identify differentially expressed genes. The benefits of parallel implementation are discussed. Results ORdensity gives the user the list of genes identified as differentially expressed genes in an easy and comprehensible way. The experimentation carried out in an off-the-self computer with the parallel execution enabled shows an improvement in run-time. This implementation may also lead to an important use of memory load. Results previously obtained with simulated and real data indicated that the procedure implemented in the package is robust and suitable for differentially expressed genes identification. Conclusions The new package, ORdensity, offers a friendly and easy way to identify differentially expressed genes, which is very useful for users not familiar with programming. Availability https://github.com/rsait/ORdensityThe authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article. This study was partially supported: II by the Spanish Ministerio de Economia y Competitividad (TIN2015-64395-R; PROSA-MED: TIN2016-77820-C3-1-R) and by the Basque Government Research Team Grant (IT313-10) SAIOTEK ProjectSA-2013/00397 and by the University of the Basque Country UPV/EHU (Grant UFI11/45 (BAILab). CA by the Spanish Ministerio de Economia y Competitividad (RTI2018-093337-B-I00), by the Spanish Ministerio de Economia y Competitividad((RTI2018-100968-B-I00) and by Grant 2017SGR622 (GRBIO) from the Departament d'Economia i Coneixement de la Generalitat de Catalunya. The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication

    RANSAC for Robotic Applications: A Survey

    Get PDF
    Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.This work has been partially funded by the Basque Government, Spain, under Research Teams Grant number IT1427-22 and under ELKARTEK LANVERSO Grant number KK-2022/00065; the Spanish Ministry of Science (MCIU), the State Research Agency (AEI), the European Regional Development Fund (FEDER), under Grant number PID2021-122402OB-C21 (MCIU/AEI/FEDER, UE); and the Spanish Ministry of Science, Innovation and Universities, under Grant FPU18/04737

    A Multi-Disciplinary Approach to Remote Sensing through Low-Cost UAVs

    Get PDF
    The use of Unmanned Aerial Vehicles (UAVs) based on remote sensing has generated low cost monitoring, since the data can be acquired quickly and easily. This paper reports the experience related to agave crop analysis with a low cost UAV. The data were processed by traditional photogrammetric flow and data extraction techniques were applied to extract new layers and separate the agave plants from weeds and other elements of the environment. Our proposal combines elements of photogrammetry, computer vision, data mining, geomatics and computer science. This fusion leads to very interesting results in agave control. This paper aims to demonstrate the potential of UAV monitoring in agave crops and the importance of information processing with reliable data flow.We wish to acknowledge the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for its financial support to the PhD studies of Gabriela Calvario. We are grateful to Cubo Geoespacial S.A .de C.V. and special to Ing. Jordan Martinez for the stimulus to this work, more information about this Company is available at: http://www.cubogeoespacial.com/. In addition, we are grateful to the support of the Tequila Regulatory Council (CRT), which has allowed us to monitor several crops. This paper has been supported by the Spanish Ministerio de Economia y Competitividad, contract TIN2015-64395-R (MINECO/FEDER, UE), as well as by the Basque Government, contract IT900-16. This work was also supported in part by CONACYT (Mexico), Grant 258033

    Classifier Subset Selection to construct multi-classifiers by means of estimation of distribution algorithms

    Get PDF
    This paper proposes a novel approach to select the individual classifiers to take part in a Multiple-Classifier System. Individual classifier selection is a key step in the development of multi-classifiers. Several works have shown the benefits of fusing complementary classifiers. Nevertheless, the selection of the base classifiers to be used is still an open question, and different approaches have been proposed in the literature. This work is based on the selection of the appropriate single classifiers by means of an evolutionary algorithm. Different base classifiers, which have been chosen from different classifier families, are used as candidates in order to obtain variability in the classifications given. Experimental results carried out with 20 databases from the UCI Repository show how adequate the proposed approach is; Stacked Generalization multi-classifier has been selected to perform the experimental comparisons.The work described in this paper was partially conducted within the Basque Government Research Team grant and the University of the Basque Country UPV/EHU and under grant UFI11/45 (BAILab)
    corecore